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Course Outline

Part I.

k-mean clustering

Spectral clustering

Worst case analysis (k = 2): Cheeger’s inequality

Part II.

Random case analysis: Stochastic Block Model (k = 2)

Dense case: analysis via spectral perturbation

Sparse case: phase transition, spectral redemption.



Part I



k-mean clustering

Data: x1, x2, . . . , xn are points in Rd.

Goal: Partition the data points into k disjoint groups S = {S1, S2, . . . , Sk} with
centers µ = (µ1, µ2, . . . , µk) such that the following energy is minimized

H(µ,S) =
k

∑
j=1

∑
i∈Sj

∥xi − µj∥
2
2. (1)

Here k = the number of clusters, which is assumed to be known. The above
minimization is done with respect to all partitions S of [n] and all centers
µ1, . . . , µk ∈ Rd.



Minimization of k-mean energy

The minimization of the k-mean-energy is NP-hard.

Given the partition S, the optimal centers are given by the respective
means of each partition blocks

µj =
1

∣Sj ∣
∑
i∈Sj

xi.

Given the centers (µj)j , the optimal partition is given by Voronoi partition
of Rd, that is,

i ∈ Sj ⇔ ∥xi − µj∥2 ≤ ∥xi − µ`∥2 for all ` = 1, . . . , k.

↑
⑳↳



Lloyd’s algorithm

Initialize centers µ0
1, µ

0
2, . . . , µ

0
k.

It is an iterative algorithm that alternates between

Step I. (assignment step) Given the centers µt
1, . . . , µ

t
k and the cluster

assignments (at1, . . . , a
t
n) ∈ {1,2, . . . , k}n, update the partition from St to St+1

as follows.

For i = 1,2, . . . , n

if argmin1≤l≤k∥xi − µ
t
l∥2 < ∥xi − µ

t
at
i
∥2,

then assign xi to the new cluster at+1i ∶= argmin1≤l≤k∥xi − µ
t
l∥2. Otherwise (in

case of equality), keep the previous assignment at+1i = ati.

Step II. (refitting step) Update the centers.

µt+1
j =

1

∣St+1
j ∣

∑
i∈St+1

j

xi

The algorithm terminates during step I if we have St+1
= S

t for all j.



Convergence of Lloyd’s algorithm

Recall

H(µ,S) =
k

∑
j=1

∑
i∈Sj

∥xi − µj∥
2
2.

Lemma

The Lloyd’s algorithm decreases the energy in each step, i.e.,

Step I:
H(µ,St+1

) ≤H(µ,St
) for any µ.

Furthermore, the equality holds if and only if St+1
= S

t.

Step II:
H(µt+1,S) ≤H(µt,S) for any S.

Hence, the algorithm converges in a finite number of iterations.

Lloyd’s algorithm may get stuck in local optima and is not guaranteed to
converge to the global optima.



Deficiencies of Lloyd’s algorithm

The final partition of Lloyd’s algorithm heavily depends on the initial
choice of the centers.

Lloyd’s algorithm always yields partition with convex regions. Hence, it
often struggles with non-convex clusters.
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Figure: The k-mean clustering is sensitive to initial choice of centers.



k-mean clusters for double-moon shaped data
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clustering on graph

Sometimes the data points do not live naturally in a metric space, but it
comes with a graphical (similarity) structure. For example, Facebook
network.

Given the data x1, x2, . . . , xn ∈ Rd, we can naturally represent the data
using a graph (undirected, possibly weighted) - examples in the next slide -
such that "close" points are connected by an edge.

Partition the graph into disjoint components such that

- a lot of connections (large weights) within a components

- very few connections (small weights) across different components.



How to construct such graphs?

Construct a weighted adjacency matrix W ∈ Rn×n, which is symmetric, where

0 ≤W (i, j) = encodes the how similar or close are the points xi and xj .

W (i, j) > 0 iff i ∼ j.

ε-neighborhood graph: Connect all points whose pairwise distances are
smaller than ε.

Take W to be the adjacency matrix of the graph, i.e., W (i, j) = 1 if
xi ∼ xj and W (i, j) = 0 otherwise.

k-nearest neighbor graph: Connect vertex xi with vertex xj if xi is among
the k-nearest neighbors of xj and vice-versa.

Gaussian weights. Complete graph with weights

W (i, j) = exp(−
∥xi − xj∥

2
2

2σ2
) .



Graph Laplacian

Let G = (V,E) be a graph with a weighted adjacency matrix W . Let
D = diag(d1, d2, . . . , dn) be the diagonal matrix of (weighted) vertex degrees,

di = ∑
j∶j∼i

wij .

The Laplacian matrix of G is defined as

L =D −W.

There are two versions of the normalized graph Laplacians

L =D−1/2LD−1/2
= I −D−1/2WD−1/2,

Q =D−1L = I −D−1W.



Spectral properties of normalized Laplacian L

Lemma

L is symmetric and positive semi-definite. The eigenvalues are
non-negative reals

0 = λ1 ≤ λ2 ≤ ⋯ ≤ λn ≤ 2.

λk = 0 iff G has at least k connected components. (⇒ λ2 > 0 iff G is
connected).

λn = 2 iff G has a bipartite connected component.



Courant-Fischer characterization of eigenvalues

Let M ∈ Rn×n be a symmetric matrix with eigenvalues

λ1 ≤ λ2 ≤ ⋯ ≤ λn.

Then

λ1 = min
x∈Rn

xTMx

xTx
,

λn = max
x∈Rn

xTMx

xTx
.

More generally,

λk = min
U ∶k−dim subspace of Rn

max
x∈U

xTMx

xTx
.

Moreover, the optimal U∗ is spanned by the first k eigenvectors of M .



Eigenvalues and connected components (unweighted case)

For simplicity, assume that the graph is unweighted. Then

xTLx =∑
i∼j

(xi − xj)
2
≥ 0.

λk(L) = min
Ũ ∶k−dim subspace

max
x∈Ũ

xTLx

xTx

= min
U ∶k−dim subspace

max
x∈U

(D1/2x)TL(D1/2x)

(D1/2x)T (D1/2x)

= min
U ∶k−dim subspace

max
x∈U

xTLx

xTDx

= min
U ∶k−dim subspace

max
x∈U

∑i∼j(xi − xj)
2

∑i dix
2
i

Optimal U∗
=D−1/2Ũ∗

=D−1/2
⋅ span(the first k eigenvectors of L).



λk = 0⇔ G has at least k connected components

Suppose λk = 0. There exists a k-dimensional subspace U∗ such that for
all x ∈ U∗

∑
i∼j

(xi − xj)
2
= 0.

This implies that if x ∈ U∗, then x must be constant on connected
components of G. Thus

k = dim(U∗
) ≤ #connected components.

If G has k connected components S1, S2, . . . Sk, then take

U∗
= span(1S1 , . . . ,1Sk).



Suppose G has k connected components (⇒ λk = 0). Fix an optimal
U∗

∈ Rn×k of dimension k.

(i) The rows of U∗ are constant vectors in Rk over each connected components.

(ii) At least k rows of U∗ are different.

We can take
U∗

=D−1/2
[f (1) ∶ f (2) ∶ ⋯ ∶ f (k)]

where f (1), f (2), . . . , f (k) are first k eigenvectors of L. Then the map

F (i) = d
−1/2
i (f

(1)
i , f

(2)
i , . . . , f

(k)
i ) ∶ [n]→ Rk.

has the above two properties.



L = normalized laplacian of a (possibly weighted graph) G,
f (1), f (2), . . . , f (k) are first k eigenvectors.

Spectral embedding into Rk.

V = {1,2, . . . , n}→ (F (1), F (2), . . . , F (n)),

where
F (i) = d

−1/2
i (f

(1)
i , f

(2)
i , . . . , f

(k)
i ).

Intuition: If G has k ‘approximately’ connected components, F maps the
vertices into k distinct closely packed group of points in Rk.

For a connected graph f (1) =D1/21. So, D−1/2f (1) = 1. So, we can ignore the
first component of F and just define the spectral embedding as

F̃ (i) = d
−1/2
i (f

(2)
i , . . . , f

(k)
i ) ∈ Rk−1.



Spectral embedding on random graph

Let G = (V,E) be a random graph such that V = S1 ∪ S2 ∪ S3 ∪ S4.

Independently for each pair i, j

P((ij) ∈ E) = {
0.2 if i, j ∈ Sk

0.02 if i ∈ Sk, j ∈ Sl
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Figure: (left) adjacency matrix of G, (right) spectral embedding.

It would be now easy for the k-mean algorithm to identify these groups of
points.



Spectral clustering algorithm

Ng-Jordan-Weiss ’02, Shi-malik ’00:

Step I. Construct a similarity graph G (unweighted or weighted). Compute
its normalized Laplacian matrix L = I −D−1/2WD−1/2.

Step II. Map the points to Rk using the spectral embedding

F (i) = d
−1/2
i (f

(1)
i , f

(2)
i , . . . , f

(k)
i ).

Step 3. (rounding step) Apply k-means to F (1), F (2), . . . , F (n) into k
clusters.



spectral clusters for double-moon data using Gaussian weights
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Another example
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Figure: (top)data, (bottom left) k-mean clustering, (bottom right) spectral clustering



Next

Rigorous worst-case analysis?

For simplicity, we will consider k = 2. In this case, the spectral embedding
says the second eigenvector f (2) contains good information about the
optimal partition of G into two “clusters”. Why?



Graph conductance, optimal cut

G = (V,E,W ) be a weighted graph.

For S ⊂ V , the total weight of the edges cut by S

ω(S,Sc
) = ∑

i∈S,j∈Sc

W (u, v).

Normalized cut of S:

φ(S) =
ω(S,Sc

)

min(vol(S),vol(Sc))
,

where vol(S) = ∑i∈S di.

Conductance of G.

ΦG = min
S∶vol(S)≤vol(V )/2

φ(S) ∈ [0,1].

If S∗ = argminφ(S), then (S∗, (S∗)c) gives us the optimal cut.



Solving combinatorial optimization problem ΦG is NP-hard (search over
binary vectors).

(Roughly) If we relax the search space from {0,1}n to Rn, we get λ2(L).

λ2 = 0⇔ G is disconnected ⇔ ΦG = 0.

Theorem (Cheeger’s inequality)

For any finite graph G,
λ2

2
≤ ΦG ≤

√
2λ2,

where λ2 is the second smallest eigenvalue of L.

The lower bound is easy. The upper bound is hard.

The Cheeger’s inequality also holds for weighted graph.



Solving combinatorial optimization problem ΦG is NP-hard (search over
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Theorem (Cheeger’s inequality)

For any finite graph G,
λ2

2
≤ ΦG ≤

√
2λ2,
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The proof of the upper bound ΦG ≤
√

2λ2 is constructive.

The proof gives a good cut So, obtained from suitably rounding f (2), such
that

φ(S) ≤
√

2λ2 ≤ 2
√

ΦG.



Relaxation step: proof of λ2/2 ≤ ΦG

For simplicity, we will take G to be an unweighted d-regular graph. In this case,
L = I − 1

d
A.

λ2 = min
x⊥1,x≠0

xTLx

dxTx
= min

x⊥1,x≠0

∑i∼j(xi − xj)
2

d∑i x
2
i

= min
x⊥1,x≠0

∑i∼j(xi − xj)
2

d
2n ∑i,j(xi − xj)

2

= min
x non-constant

∑i∼j(xi − xj)
2

d
2n ∑i,j(xi − xj)

2



Suppose we perform the above minimization over binary vectors. Take x = 1S .
Then the optimal value becomes

min
S

∑i∼j(1S(i) − 1S(j))
2

d
2n ∑i,j(1S(i) − 1S(j))2

= min
S

ω(S,Sc
)

d
n
∣S∣∣Sc∣

= min
S

ω(S,Sc
)

vol(S)vol(Sc)

vol(V )

[vol(S) = d∣S∣]

≤ 2ΦG.



Cheeger’s inequality: hard direction

Need to show ΦG ≤
√

2λ2.

Fiedler’s sweep algorithm

(a) Compute the eigenvector f(2) of L corresponding to λ2.

(b) Order the vertices so that

f
(2)
1
√

d1
≤

f
(2)
2
√

d2
≤ ⋯ ≤

f
(2)
n
√

dn
.

(c) Choose “sweep” cut (So, (So
)
c
) = ({1,2, . . . , i},{i + 1, ..., n}) with smallest

conductance.

Will show that φ(So
) ≤

√
2λ2 ⇒ ΦG ≤

√
2λ2.



Proof of Cheeger’s inequality: hard direction

Assume that G is d-regular.

Let x be the second eigenvector of L. Set y = x+. WLOG, supp(y) ≤ n/2.

Define the Rayleigh quotient of z as

R(z) =
zTLz

zT z
=
∑i∼j(zi − zj)

2

d∑i zi
.

Claim. R(y) ≤ R(x) = λ2.

Proof. Take i such that yi = xi > 0. Then

(Ly)i = yi −
1

d
∑
j∶j∼i

yj ≤ xi −
1

d
∑
j∶j∼i

xj = (Lx)i = λ2xi = λ2yi.

So,

yTLy =∑
i

yi(Ly)i = ∑
i∶yi>0

yi(Ly)i ≤ ∑
i∶yi>0

λ2y
2
i = λ2∑

i

y2i .



Key Lemma

Lemma

Let y ≥ 0. For t ∈ (0,maxi yi], set

St = {i ∶ y2i ≥ t}.

There exists t such that
φ(St) ≤

√
2R(y).

Plugging in y = x+, we obtain St ⊆ supp(y) ≤ n/2 and

φ(St) ≤
√

2R(y) ≤
√

2R(x) =
√

2λ2,

which shows that
ΦG ≤

√
2λ2.

Moreover, every such St is examined by Fiedler’s algorithm.



Proof of the key lemma

Proof in one line - "just pick a random threshold"!

By appropriate scaling, assume that 0 ≤ yi ≤ 1 for all i. Let t ∼ U(0,1).

Recall St = {i ∶ y2i ≥ t}.

E[ω(St)] =∑
i∼j

P(the edge (ij) is cut by St)

=∑
i∼j

P(y2i < t ≤ y
2
j or y2j < t ≤ y

2
i )

=∑
i∼j

∣y2i − y
2
j ∣ =∑

i∼j

∣yi − yj ∣∣yi + yj ∣

≤

√

∑
i∼j

(yi − yj)2
√

∑
i∼j

(yi + yj)2 [Cauchy Schwarz]

≤

√

∑
i∼j

(yi − yj)2
√

2d∑
i

y2i [(a + b)2 ≤ 2(a2 + b2).]

=
√

2R(y) ⋅ d∑
i

y2i .



On the other hand,

Evol(St) = dE∣St∣ = d∑
i

P(yi ≥ t) = d∑
i

y2i .

Therefore,
E[ω(St)]

Evol(St)
≤
√

2R(y),

which implies
E[ω(St) −

√
2R(y)vol(St)] ≤ 0.

We conclude that there exists a deterministic t ∈ [0,1] such that

ω(St) −
√

2R(y)vol(St) ≤ 0.

Consequently,

φ(So
) ≤ φ(St) ≤

√
2R(y) ≤

√
2R(x) =

√
2λ2.



Discussion on Cheeger: approximate eigenvector

The proof can be modified to show that if we perform sweep algorithm on any
vector x ⊥ 1, we obtain

φ(So
) ≤

√
2R(x).

Therefore, the sweep algorithm produces good cut if we feed an approximate
second eigenvector (can be computed more efficiently using power method).



Tightness of Cheeger’s inequality ΦG = Ω(λ2)

The dumbbell graph.

kn.. kn

In this case,
ΦG = Θ(n−2).

By Cheeger, λ2 = O(n−2). It can be shown that (exercise) λ2 = Θ(n−2).

The second eigenvector f (2) will approximately +1 on the left part and −1 on
the right part. Hence, the sweep algorithm gives the best cut.



Tightness of Cheeger’s inequality ΦG = O(√λ2)

Cycle Cn. Let x = (1,1 − 4
n
,1 − 8

n
, . . . ,−1,−1 + 4

n
, . . . ,1) ⊥ 1. Then

λ2 ≤
xTLx

2xTx
=
∑i∼j(xi − xj)

2

2∑i x
2
i

= O(n−2).

By Cheeger, ΦG = O(
√
λ2) = O(n−1). On the other hand, ΦG = Ω(n−1).

Therefore,
ΦG = O(n−1), λ2 = O(n−2).

Interestingly, the sweep algorithm still produces the optimal cut
φ(So

) = Θ(n−1).



Two cycles Cn + hidden matching.
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The red cut is the optimal cut, ΦG = Θ(n−2).

Second eigenvector = two copies of second eigenvectors of Cn ⇒ λ2 = Θ(n−2).

The sweep algorithm still produces the green cut φ(So
) = Θ(n−1).



Improved Cheeger

The sweep algorithm outputs a set So such that

φ(So
) = O(

√
λ2) = O(

√
ΦG).

Kwok-Lau-Lee-Oveis Gharan-Trevisan ’13: For any k ≥ 2, the sweep
algorithm outputs a set So such that

φ(So
) = O (

kλ2
√
λk

) = O (
kΦG
√
λk

) .

For example, if λ3 ≥ c, we get a O(1)-approximation of ΦG.



Beyond k = 2: higher order Cheeger

Order-k conductance. Let k ≥ 2.

ΦG(k) = min
S1,S2,...,Skdistjoint

max
i
φ(Si).

ΦG(k) = 0⇔ G has ≥ k connected components⇔ λk = 0.

Lee-Oveis Gharan-Trevisan ’12:

λk

2
≤ ΦG(k) = O(k2

√
λk).

Furthermore, there is an algorithm (spectral embedding + geometric
partitioning) which returns

k disjoint sets S1, S2, . . . , Sk such that maxi φ(Si) = O(k2
√
λk).
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