Arnab Sen

June 2023



Course Outline

Part I.
@ k-mean clustering
@ Spectral clustering

o Worst case analysis (k = 2): Cheeger’s inequality

Part 1.
o Random case analysis: Stochastic Block Model (k = 2)
@ Dense case: analysis via spectral perturbation

o Sparse case: phase transition, spectral redemption.
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k-mean clustering

Data: 21,2, ...,Zn are points in R?.

Goal: Partition the data points into k disjoint groups S = {S1,52,..., Sk} with

centers = (u1, 42, . .., ik ) such that the following energy is minimized
£ 2
H(p,S) =3 > i — iz (1)
j=14eS;

Here k = the number of clusters, which is assumed to be known. The above
minimization is done with respect to all partitions S of [n] and all centers
Hiy.eey Uk ERd.



Minimization of k-mean energy

o The minimization of the k-mean-energy is NP-hard.

o Given the partition S, the optimal centers are given by the respective
means of each partition blocks

m=@_2 Li-

o Given the centers (p;);, the optimal partition is given by Voronoi partition
of RY, that is,

1€8S; < |zi—pjil2 < |zi—pell2 forall £=1,... k.




Lloyd’s algorithm

Initialize centers u, 13, ..., pd.

It is an iterative algorithm that alternates between

Step |. (assignment step) Given the centers p, ..., uk and the cluster
assignments (a’,...,al) € {1,2,...,k}"™, update the partition from S’ to S***
as follows.

Fori=1,2,...,n

f . . t . t

it argming g @i — g2 < @i = prge |2,
then assign x; to the new cluster a}*' := argmin, . |2 — p1f |2. Otherwise (in
case of equality), keep the previous assignment a.™* = a!.

Step Il. (refitting step) Update the centers.
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The algorithm terminates during step | if we have S™*' = S* for all j.



Convergence of Lloyd’s algorithm

Recall

k
H(p,8) =3 3 i = ps3-

Jj=11eS;

Lemma

The Lloyd’s algorithm decreases the energy in each step, i.e.,
o Step I:
H(p,8"") < H(p,S") for any p.
Furthermore, the equality holds if and only if S™* = S*.
o Step ll:
H(p'™",8) < H(u',S) for any S.

Hence, the algorithm converges in a finite number of iterations.

o Lloyd's algorithm may get stuck in local optima and is not guaranteed to
converge to the global optima.



Deficiencies of Lloyd’s algorithm

o The final partition of Lloyd's algorithm heavily depends on the initial
choice of the centers.

o Lloyd's algorithm always yields partition with convex regions. Hence, it
often struggles with non-convex clusters.



Figure: The k-mean clustering is sensitive to initial choice of centers.



k-mean clusters for double-moon shaped data
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clustering on graph

@ Sometimes the data points do not live naturally in a metric space, but it
comes with a graphical (similarity) structure. For example, Facebook
network.

o Given the data z1,z2,..., 2, € RY, we can naturally represent the data
using a graph (undirected, possibly weighted) - examples in the next slide -
such that "close" points are connected by an edge.

o Partition the graph into disjoint components such that
- a lot of connections (large weights) within a components

- very few connections (small weights) across different components.



How to construct such graphs?

Construct a weighted adjacency matrix W € R™ ", which is symmetric, where
0 < W(i,7) = encodes the how similar or close are the points x; and z;.

W(i,7) >0 iff i~ j.

o e-neighborhood graph: Connect all points whose pairwise distances are
smaller than ¢.

Take W to be the adjacency matrix of the graph, i.e.,, W(i,5) =1 if
x; ~xj and W (4,j) = 0 otherwise.

o k-nearest neighbor graph: Connect vertex x; with vertex z; if z; is among
the k-nearest neighbors of z; and vice-versa.

o Gaussian weights. Complete graph with weights

iy lzs — a3
W(i,j) = exp |- 12202 )
(i,5) exp( 552



Graph Laplacian

Let G = (V, E) be a graph with a weighted adjacency matrix W. Let
D = diag(dy,d2,...,dy) be the diagonal matrix of (weighted) vertex degrees,

dz‘ = Z Wsj -

Jig~i
The Laplacian matrix of G is defined as

L=D-W.

There are two versions of the normalized graph Laplacians
=D Y2 p 2 _ - pri2yy pi/2
Q=D'L=I-D"'W.



Spectral properties of normalized Laplacian L

Lemma

o L is symmetric and positive semi-definite. The eigenvalues are
non-negative reals

o )\, =0 iff G has at least k connected components. (= X2 >0 iff G is
connected).

o A\, =2 iff G has a bipartite connected component.




Courant-Fischer characterization of eigenvalues

Let M € R™"™ be a symmetric matrix with eigenvalues

A< A2 << A

Then
2T Mz
A1 = min
zeRn  xTg
2T Mz
An = INax .
zeR? T
More generally,
. =z Mz
Ak = min max .

U:k—dim subspace of R xeU xT,r

Moreover, the optimal U* is spanned by the first k eigenvectors of M.



Figenvalues and connected components (unweighted case)

For simplicity, assume that the graph is unweighted. Then

" La = (i - z;)% > 0.

i~

'L

X

Me(L) = min max
U:k—dim subspace zelU Ty

(DI/ZCU)TE(DI/ZCU)
U:k— dlI:'\Hsrulbspace xelU (D1/2 )T(D1/2LE)
2T Lx

= min max —&/——
U:k—dim subspace zeU zT Dx

2
. Yinj (i —xj)
= min max T e 7 .2
U:k—dim subspace zeU Zz dll'z

Optimal U* = D™"20* = D™/ . span(the first k eigenvectors of £).



A =0 < G has at least k connected components

@ Suppose A\, = 0. There exists a k-dimensional subspace U* such that for

all z e U”
Z(Z‘Z 7.’Ej)2 =0.

i~y
This implies that if x € U”, then  must be constant on connected
components of G. Thus

k =dim(U™) < #tconnected components.

o If G has k connected components S1,.55,...S5, then take

U* =span(lsg,,...,1s,).



Suppose G has k connected components (= A; = 0). Fix an optimal
U* e R™* of dimension k.

(i) The rows of U™ are constant vectors in R* over each connected components.
(i) At least k rows of U™ are different.

We can take
* -1 1 k
U =D /2[f( ) :f(2):"'5f( )]
where f £ #®) are first k eigenvectors of £. Then the map
FG) =d; (0 12, 1) (0] - RS

has the above two properties.



L = normalized laplacian of a (possibly weighted graph) G,
f(l),f@), .. .,f(k) are first k eigenvectors.

Spectral embedding into R*.

V=1{1,2,...,n} > (F(1),F(2),...,F(n)),

where
F(i)=d PO 12, f ).

Intuition: If G has k ‘approximately’ connected components, F' maps the
vertices into k distinct closely packed group of points in R

)

For a connected graph £V = DY/21. So, D™*/?f(1) = 1. So, we can ignore the
first component of F' and just define the spectral embedding as

FG)y=d;"P(f@,..., 1) e RF



Spectral embedding on random graph

Let G = (V, E) be a random graph such that V' = 51 U Sz U S5 U Sa.

Independently for each pair i, j

3 [ 02 it 4,j € Si
P((ij) € E) ‘{ 0.02 ifieSk,jeS

Figure: (left) adjacency matrix of G, (right) spectral embedding.

It would be now easy for the k-mean algorithm to identify these groups of
points.



Spectral clustering algorithm

Ng-Jordan-Weiss '02, Shi-malik '00:

Step I. Construct a similarity graph G (unweighted or weighted). Compute
its normalized Laplacian matrix £ = I - D™Y?WD™/2,

Step II. Map the points to R* using the spectral embedding

F@)=d;"P(fO 12, 19,

Step 3. (rounding step) Apply k-means to F'(1),F(2),...,F(n) into k
clusters.



spectral clusters for double-moon data using Gaussian weights
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Another example
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Figure: (top)data, (bottom left) k-mean clustering, (bottom right) spectral clustering



Next

o Rigorous worst-case analysis?

o For simplicity, we will consider k = 2. In this case, the spectral embedding
says the second eigenvector f(?) contains good information about the
optimal partition of G into two “clusters”. Why?



Graph conductance, optimal cut
G = (V,E,W) be a weighted graph.

For S c V, the total weight of the edges cut by S

w(S, 8= > W(u,v).
i€S,jeS¢c

Normalized cut of S:

w(S,5°)
min(vol(S),vol(S¢))’

#(S) =
where vol(S) = 3,5 d;.
Conductance of G.

¢(S5) €[0,1].

S VDI(S)<V01(V)/2

If S* = argming(S), then (S*,(5*)°) gives us the optimal cut.



@ Solving combinatorial optimization problem ®¢ is NP-hard (search over
binary vectors).

@ (Roughly) If we relax the search space from {0,1}" to R", we get A2(L).

A2 =0 < G is disconnected < & =0.



@ Solving combinatorial optimization problem ®¢ is NP-hard (search over
binary vectors).

@ (Roughly) If we relax the search space from {0,1}" to R", we get A2(L).

A2 =0 < G is disconnected < & =0.

Theorem (Cheeger’s inequality)

For any finite graph G,

%S@‘GSV?)\%

where X2 is the second smallest eigenvalue of L.

@ The lower bound is easy. The upper bound is hard.

@ The Cheeger’s inequality also holds for weighted graph.



o The proof of the upper bound ®¢ < \/2)\; is constructive.

o The proof gives a good cut S°, obtained from suitably rounding f(®, such
that

#(S) < V22 < 2V ®¢.



Relazation step: proof of \a/2 < D¢

For simplicity, we will take G to be an unweighted d-regular graph. In this case,
L=T-%A
d

2

A\ R . Y@ - )

2 = Inin = mmn ———_——5—
xl1l,xz+0 d,fz,’T;L‘ xl1l,z+0 d Zz x?

Zi~j(1’i - 951')2
min ——
zl11l,x+0 o Zi,j (wz — x])
Zi~j (zi - CUJ')Q

min d—2
x non-constant b Zi,j (:177. — xj)




Suppose we perform the above minimization over binary vectors. Take x = 1g.
Then the optimal value becomes

iy 2 (L5 () ~ Ls(5))°
$ 5 %4 (1s(i) - Ls(4))?
— min 2359
s ISl
o w(S,59)
= msln W [VO](S) = dlS']
vol(V)

<2Pg.



Cheeger’s inequality: hard direction

o Need to show ®g < /2)s.

Fiedler’s sweep algorithm

(a) Compute the eigenvector £ of £ corresponding to \s.

(b) Order the vertices so that

(2) (2) (2)
) < _ gl

(c) Choose “sweep” cut (S°,(S°)°) =({1,2,...,4},{i+1,...,n}) with smallest
conductance.

o Will show that ¢(S°%) < /2X2 = $g < V2,



Proof of Cheeger’s inequality: hard direction
Assume that G is d-regular.
Let = be the second eigenvector of £. Set y = z*. WLOG, supp(y) < n/2.

Define the Rayleigh quotient of z as

T

2" Lz
R(z) = o

iy (2i - %)

Claim. R(y) < R(z) = Xa.

Proof. Take ¢ such that y; = x; > 0. Then

1 1
(Ly)i=yi=7 2 yi<wi=o 20 @ = (La)i = dowi = Aoy
Jij~i Jij~i

So,
y' Ly = Zyz(ﬁy)z— 3 owi(Ly)i< D Xoyi = Xe Zyz-

7:y; >0 2y >0



Key Lemma

Let y > 0. Forte (0,max; y;], set

Sy ={i:yf 2t}

There exists t such that

o(St) <V2R(y).

Plugging in y = z,, we obtain S; ¢ supp(y) <n/2 and

#(St) </2R(y) < \/2R(x) = V22,

which shows that

Pg < V2.

Moreover, every such S; is examined by Fiedler's algorithm.



Proof of the key lemma

Proof in one line - "just pick a random threshold"!
By appropriate scaling, assume that 0 < y; <1 for all 7. Let t ~U(0,1).

Recall S; = {i:y2 >t}
E[w(S:)] = > P(the edge (ij) is cut by S;)
i
=S P(y; <t<yjory; <t<yi)
i
= 2lwi = w3l = Y lyi = wslly: + v

i~g i~j

< 2 i), [ (yi +y5)? [Cauchy Schwarz]

i~j i~j

< Z(yz —y)2\ /243 y? [(a+b)? <2(a®+b?).]

=V2R(y)-d Yy




On the other hand,

Evol(S;) = dE|S:| = d S P(y; > t) = d 3 y2.

Therefore,

Elw(S)] _ V2R,

]EVOl(St) -
which implies

E[w(St) - \/2R(y)vol(St)] <0.

We conclude that there exists a deterministic ¢ € [0,1] such that

w(St) —v/2R(y)vol(St) <0.

Consequently,

d(S°) < #(St) </2R(y) < V2R(x) = V2)s.



Discussion on Cheeger: approzimate eigenvector

The proof can be modified to show that if we perform sweep algorithm on any

vector z L 1, we obtain
#(S%) <V/2R(x).

Therefore, the sweep algorithm produces good cut if we feed an approximate
second eigenvector (can be computed more efficiently using power method).



Tightness of Cheeger’s inequality ®q = Q(\2)

| _
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CDG = @(n_Q).

The dumbbell graph.

In this case,

By Cheeger, A2 = O(n™?). It can be shown that (exercise) A2 = ©(n?).

The second eigenvector f® will approximately +1 on the left part and -1 on
the right part. Hence, the sweep algorithm gives the best cut.



Tightness of Cheeger’s inequality @ = O(\/A2)

o Cycle C,,. Let:c:(171—%71—%,...,—1,—1+%,...,1)J_l,Then

2T Lx _ ZiNj(J% - mj)z
2xTx 2y, 2?

=0(n™?).

A2 <

By Cheeger, ¢ = O(v/A2) = O(n™"). On the other hand, ®¢ = Q(n™").

Therefore,
Do =0(n"), A=0(n">).

Interestingly, the sweep algorithm still produces the optimal cut

¢(5°) =0(n™").



Two cycles C,, + hidden matching.
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The red cut is the optimal cut, & = ©(n?).
Second eigenvector = two copies of second eigenvectors of C,, = A2 = ©(n?).

The sweep algorithm still produces the green cut ¢(5°) = ©(n™").



Improved Cheeger

o The sweep algorithm outputs a set S° such that

#(5%) = O(VA2) = O(V®G).

o Kwok-Lau-Lee-Oveis Gharan-Trevisan '13: For any k > 2, the sweep
algorithm outputs a set S° such that

w-off)-olt)

For example, if A3 > ¢, we get a O(1)-approximation of ®.




Beyond k = 2: higher order Cheeger

Order-k conductance. Let k> 2.

Da(k) = < max ¢(5;).

min
1,52,...,Skdistjoint %

@ (k) =0 < G has > k connected components < )\, = 0.

Lee-Oveis Gharan-Trevisan '12:
A
f < ®g(k) = O(K°/A).

Furthermore, there is an algorithm (spectral embedding + geometric
partitioning) which returns

k disjoint sets S1,S2, ..., Sk such that max; ¢(S;) = O(k*v/Ar).
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